Articulation Agreement Identifier: _INT 103 (2011-1)______ Identifier is the postsecondary course prefix followed by Plan-of-Instruction version number (e.g.; INT 100 (2007-1)).

Applicable CIP code(s):_ 47.0303

Postsecondary course prefix, number, and title: __ INT 103 AC Fundamentals

Secondary Education course(s) title and number: __431510/430059 - Alternating Current

Initial Review: __October 15, 2009__

DPE Annual Review: February 23, 2012

Effective date: Fall Semester 2011.

Course Content Analysis (all postsecondary course objectives must be sufficiently addressed in the secondary courses):

Notes:
1. Skills and knowledge contained in the postsecondary course objectives must be present in the corresponding secondary objectives for a “match” to occur.
2. Postsecondary and Secondary objectives must reflect similar content and performance levels before the course articulation agreement will be recommended to the TEDAC Oversight Committee.
3. More than one Secondary course may be used in order to articulate to a Postsecondary course.
Module A Principles of AC Electricity

Competency:
A1.0 Explain elements of AC electrical theory.

Performance Objective
This competency is measured cognitively.

Learning Objectives:
- A1.1.1 Identify the particles in an atom.
- A1.1.2 State the electrical charge of the atomic particles.
- A1.1.3 Define voltage, current, resistance, and power.
- A1.1.4 State the units of measurement for voltage, current, resistance, and power.
- A1.1.5 Describe the relationship between voltage, current, resistance, and power.
- A1.1.6 Explain the function of voltage sources.
- A1.1.7 State Ohm’s Law.
- A1.1.8 State the Power Law.
- A1.1.9 State Kirchhoff’s Law as applied to AC theory.
- A1.1.10 Describe the relationship between electricity and magnetism.
- A1.1.11 Explain the operation of an electromagnet.
- A1.1.12 Explain how magnetic induction works.
- A1.1.13 Identify a sine wave.
- A1.1.14 Describe period, frequency, and amplitude.
- A1.1.15 State the unit of measurement for frequency.
- A1.1.16 Describe peak, peak-to-peak, and effective voltage.
- A1.1.17 Describe phase relationships and phase-shift.
- A1.1.18 Define capacitance.
- A1.1.19 State the unit of measurement for capacitance.
- A1.1.20 Define reactance.
- A1.1.21 Define inductance.
- A1.1.22 State the unit of measurement for inductance.
- A1.1.23 Describe the function of an inductor in a circuit.

Alternating Current

Unit 1-2 – Terminology and Symbols

Content Standard(s)
1. Explain electrical terms, including alternating current, frequency, period, sine wave, capacitance, and inductance.
2. Interpret electrical symbols.

Learning Objective(s)
1. Define and explain electrical terms.
2. Identify and interpret common electrical symbols.

Unit 3 – Magnetism

Content Standard(s)
3. Explain terms and principles of electromagnetism, including permeability, retentivity, and inductance.

Learning Objective(s)
1. Define magnetism.
2. Explain the function of magnetism in electricity.
3. Define magnetic units.
4. Identify magnetic units.
5. Explain the function of magnetic units in electricity.
7. Identify electromagnetic units.
8. Explain electromagnetic induction.
10. Explain permeability.
11. Define retentivity.
12. Explain retentivity.
13. Define inductance.
14. Explain inductance.

Unit 4-6 – Electrical Quantities

Content Standard(s)
4. Explain electrical quantities, including frequency, impedance, power, capacitance, inductance, voltage, current, watts, and periods.
5. Measure electrical units, including volts, amperes, ohms, and
<table>
<thead>
<tr>
<th>Postsecondary Course Objectives</th>
<th>Secondary Courses and Objectives</th>
<th>TEDAC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competency: A2.0</td>
<td>Performance Objective A2.1</td>
<td>Learning Objective(s)</td>
</tr>
<tr>
<td>Perform tasks in a safe manner.</td>
<td>Given a variety of lab situations, perform assigned tasks in a safe manner.</td>
<td>6. Determine electrical quantities utilizing test equipment, including volts, frequency and period, amperes, and power.</td>
</tr>
<tr>
<td>Learning Objectives: A2.1.1</td>
<td>Identify personal protective equipment.</td>
<td>Learning Objective(s)</td>
</tr>
<tr>
<td>A2.1.2</td>
<td>Explain the use of personal protective equipment.</td>
<td>See above</td>
</tr>
<tr>
<td>A2.1.3</td>
<td>Explain hazards associated with electrical systems.</td>
<td>Unit 7-8 - Ohm’s Law in Alternating Current Circuits</td>
</tr>
<tr>
<td>A2.1.4</td>
<td>Explain lockout/tag out procedures.</td>
<td>Learning Objective(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Draw a schematic diagram of an AC series circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Draw a schematic diagram of an AC parallel circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Draw a schematic diagram of an AC Series Parallel Circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Use common test equipment to analyze an AC series circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Use common test equipment to analyze a parallel circuit according to specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Use common equipment to analyze a series-parallel circuit according to specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Use a function generator to set the required voltage and frequency for a function generator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Use a digital multimeter and an oscilloscope to perform an operational checkout of an AC circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Use a digital multimeter to troubleshoot an AC circuit and identify the malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Use an oscilloscope to troubleshoot an AC circuit and identify the malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Construct an AC Parallel Circuit containing resistors, capacitors, inductors, or combinations thereof, and test for continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Construct an AC Series-Parallel Circuit containing resistors, capacitors, inductors or combinations thereof, and test for continuity.</td>
</tr>
<tr>
<td>Competency: A3.0</td>
<td>Performance Objective A3.1</td>
<td>Unit 8-12 – Reactive Circuits</td>
</tr>
<tr>
<td>Value the importance of following safety precautions.</td>
<td>This competency is measured affectively.</td>
<td>Content Standard(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Solve resistive-capacitive circuits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Solve resistive-capacitive-inductive circuits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Analyze filter circuits to determine electrical values, including hertz.</td>
</tr>
<tr>
<td>MODULE B – AC Electrical Circuits</td>
<td>Learning Objective(s)</td>
<td>Learning Objective(s)</td>
</tr>
<tr>
<td>Competency: B1.0</td>
<td>Performance Objectives: B1.1</td>
<td>Design and construct a variety of AC circuits.</td>
</tr>
<tr>
<td>Read and interpret electrical circuits.</td>
<td>Learning Objectives:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Draw a schematic diagram of an AC series circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Draw a schematic diagram of an AC parallel circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Draw a schematic diagram of an AC Series Parallel Circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Use common test equipment to analyze an AC series circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Use common test equipment to analyze a parallel circuit according to specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Use common equipment to analyze a series-parallel circuit according to specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Use a function generator to set the required voltage and frequency for a function generator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Use a digital multimeter and an oscilloscope to perform an operational checkout of an AC circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Use a digital multimeter to troubleshoot an AC circuit and identify the malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Use an oscilloscope to troubleshoot an AC circuit and identify the malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Construct an AC Parallel Circuit containing resistors, capacitors, inductors, or combinations thereof, and test for continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Construct an AC Series-Parallel Circuit containing resistors, capacitors, inductors or combinations thereof, and test for continuity.</td>
</tr>
</tbody>
</table>
Postsecondary Course Objectives

B1.1.1	Explain terms and symbols used for electrical circuits.
B1.1.2	State the basic components of an electrical circuit.
B1.1.3	Identify characteristics of conductors of different capacities.
B1.1.4	Describe the differences between schematic and wiring diagrams.
B1.1.5	Differentiate between series, parallel, series-parallel circuits, and RCL circuits.
B1.1.6	Explain considerations for using various types of connections when constructing AC circuits.

Secondary Courses and Objectives

- hi-pass, low-pass, band pass, and band stop.
- Demonstrate troubleshooting techniques for evaluating reactive circuits.

Learning Objectives

1. Explain the function of inductance.
2. Define inductive reactance.
3. Explain the function of inductive reactance.
4. Identify inductive circuits.
5. Define capacitive reactance.
6. Explain the function of capacitive reactance.
7. Identify capacitive circuits.
8. Identify open circuits in AC circuits.
9. Identify short circuits in AC circuits.
10. Define RC time constants.
11. Explain the function of RC time constants.
12. Define LR time constants.
13. Explain the function of LR time constants.
14. Explain the use of complex numbers for Alternating current circuits.
15. State the purpose of transformers.
16. Differentiate between transformers.
17. Explain the characteristics of transformers.
18. Define resonance.
19. Explain the function of resonance.
20. Define filters.
21. Explain the function of filters.
22. Describe the voltage and current phase relationship in a resistive AC circuit.
23. Describe the voltage and current transients that occur in an inductive circuit.
24. Define inductive reactance and state how it is affected by frequency.
25. Describe the voltage and current transients that occur in a...
Module D Transformers

Competency:
D1.0 Use transformers in an industrial setting.

Performance Objectives
D1.1 Perform transformer wiring functions for various applications.

Learning Objectives
D1.1.1 Describe the difference between mutual induction and self induction.
D1.1.2 Differentiate between the input side and load side of a transformer.
D1.1.3 Define Impedance.
D1.1.4 Identify various transformer types such as step up, step down, single phase, auto transformers, and polyphase.
D1.1.5 Explain the operation of transformers including action and counter action of the primary and secondary magnetic fields.
D1.1.6 Explain the function of a center tap.
D1.1.7 Calculate primary and secondary ratios for voltage, current, turns, power, and impedance.
D1.1.8 Identify primary leads, secondary leads, and transformer polarity from a schematic diagram.
D1.1.9 Differentiate between delta and wye connections.
D1.1.10 Explain the relationship of line current to coil current and line voltage in Wye and Delta configurations of polyphase transformers.
D1.1.11 Explain the purpose of isolation in a transformer.

Capacitive circuit.
26. Define capacitive reactance and state how it is affected by frequency.
27. Explain the relationship between voltage and current in the following types of AC circuits:
 • RL circuit
 • RC circuit
 • LC circuit
 • RLC circuit
28. Describe the effect that resonant frequency has on impedance and current flow in a series or parallel Resonant circuit.
29. Define bandwidth and describe how it is affected by resistance in a series or parallel resonant circuit.
30. Explain the following terms as they relate to AC circuits:
 • True power
 • Apparent power
 • Reactive power
 • Power factor
31. Troubleshoot circuits.